zzck/mqreceive.py

174 lines
5.9 KiB
Python
Raw Permalink Normal View History

2025-09-02 15:15:51 +08:00
import pika
import json
import logging
import time
import os
from config import *
from llm_process import send_mq, get_label
# 声明一个全局变量,存媒体的权威度打分
media_score = {}
with open("media_score.txt", "r", encoding="utf-8") as f:
for line in f:
line = line.strip()
if not line:
continue
try:
media, score = line.split("\t")
media_score[media.strip()] = int(score)
except ValueError as e:
print(f"解析错误: {e},行内容: {line}")
continue
# 幂等性存储 - 记录已处理消息ID
processed_ids = set()
def message_callback(ch, method, properties, body):
"""消息处理回调函数"""
try:
data = json.loads(body)
id_str = str(data["id"])
# ch.basic_ack(delivery_tag=method.delivery_tag)
# print(f"接收到消息: {id_str}")
# return
# 幂等性检查:如果消息已处理过,直接确认并跳过
if id_str in processed_ids:
print(f"跳过已处理的消息: {id_str}")
ch.basic_ack(delivery_tag=method.delivery_tag)
return
# 在此处添加业务处理逻辑
content = data.get('CN_content', "").strip()
source = "其他"
category_data = data.get('c', [{}])
category = ""
if category_data:
category = category_data[0].get('category', '')
b_data = category_data[0].get('b', [{}])
if b_data:
d_data = b_data[0].get('d', [{}])
if d_data:
source = d_data[0].get('sourcename', "其他")
source_impact = media_score.get(source, 5)
tagged_news = get_label(content, source)
public_opinion_score = tagged_news.get("public_opinion_score", 30) #资讯质量分
China_factor = tagged_news.get("China_factor", 0.2) #中国股市相关度
news_score = source_impact * 0.04 + public_opinion_score * 0.25 + China_factor * 35
news_score = round(news_score, 2)
#如果想让分数整体偏高可以开根号乘10
#news_score = round((news_score**0.5) * 10.0, 2)
industry_confidence = tagged_news.get("industry_confidence", [])
industry_score = list(map(lambda x: round(x * news_score, 2), industry_confidence))
concept_confidence = tagged_news.get("concept_confidence", [])
concept_score = list(map(lambda x: round(x * news_score, 2), concept_confidence))
tagged_news["source"] = source
tagged_news["source_impact"] = source_impact
tagged_news["industry_score"] = industry_score
tagged_news["concept_score"] = concept_score
tagged_news["news_score"] = news_score
tagged_news["id"] = id_str
print(json.dumps(tagged_news, ensure_ascii=False))
# 发送百炼大模型标注过的新闻json到队列
send_mq(tagged_news)
# 处理成功后记录消息ID
processed_ids.add(id_str)
if len(processed_ids) > 10000:
processed_ids.clear()
# 手动确认消息
ch.basic_ack(delivery_tag=method.delivery_tag)
except Exception as e:
print(f"消息处理失败: {str(e)}")
# 拒绝消息, 不重新入队
ch.basic_nack(delivery_tag=method.delivery_tag, requeue=False)
def create_connection():
"""创建并返回RabbitMQ连接"""
credentials = pika.PlainCredentials(mq_user, mq_password)
return pika.BlockingConnection(
pika.ConnectionParameters(
host="localhost",
credentials=credentials,
heartbeat=600,
connection_attempts=3,
retry_delay=5 # 重试延迟5秒
)
)
def start_consumer():
"""启动MQ消费者"""
while True: # 使用循环而不是递归,避免递归深度问题
try:
connection = create_connection()
channel = connection.channel()
# 设置QoS限制每次只取一条消息
channel.basic_qos(prefetch_count=1)
channel.exchange_declare(
exchange="zzck_exchange",
exchange_type="fanout"
#durable=True # 确保交换器持久化
)
# 声明持久化队列
res = channel.queue_declare(
queue="to_ai"
# durable=True # 队列持久化
)
mq_queue = res.method.queue
channel.queue_bind(
exchange="zzck_exchange",
queue=mq_queue,
)
# 启动消费关闭自动ACK
channel.basic_consume(
queue=mq_queue,
on_message_callback=message_callback,
auto_ack=False # 关闭自动确认
)
print("消费者已启动,等待消息...")
channel.start_consuming()
except pika.exceptions.ConnectionClosedByBroker:
# 代理主动关闭连接,可能是临时错误
print("连接被代理关闭将在5秒后重试...")
time.sleep(5)
except pika.exceptions.AMQPConnectionError:
# 连接错误
print("连接失败将在10秒后重试...")
time.sleep(10)
except KeyboardInterrupt:
print("消费者被用户中断")
try:
if connection and connection.is_open:
connection.close()
except:
pass
break
except Exception as e:
print(f"消费者异常: {str(e)}")
print("将在15秒后重试...")
time.sleep(15)
finally:
try:
if connection and connection.is_open:
connection.close()
except:
pass
if __name__ == "__main__":
start_consumer()