pdf_code/zzb_data_word/excel.py

119 lines
3.7 KiB
Python

import pandas as pd
import json
import utils
from config_p import MYSQL_HOST,MYSQL_USER,MYSQL_PASSWORD,MYSQL_DB
import mysql.connector
# 读取 Excel 文件
df = pd.read_excel('/Users/zhengfei/Desktop/cb/ttt.xlsx', header=0)
# 将 DataFrame 转换为字典列表
data_list = df.to_dict(orient='records')
year = 2023
conn = mysql.connector.connect(
host = MYSQL_HOST,
user = MYSQL_USER,
password = MYSQL_PASSWORD,
database = MYSQL_DB
)
# 创建一个cursor对象来执行SQL语句
cursor = conn.cursor()
insert_query = '''
INSERT INTO measure_create_config
(config_id, meta_measure, same_mean_measure, measure_period, change_type, black_list)
VALUES (%s, %s, %s, %s, %s, %s)
'''
for data in data_list:
show_measure = str(data['指标'])
same_mean_measure = str(data['同义表述'])
period_measure = str(data['周期'])
change_measure = str(data['变动'])
black_list = str(data['黑名单词'])
config_id = utils.get_md5(show_measure)
insert_query_data = (config_id, show_measure, same_mean_measure, period_measure, change_measure, black_list)
cursor.execute(insert_query, insert_query_data)
conn.commit()
# 读取 Excel 文件
df_period = pd.read_excel('/Users/zhengfei/Desktop/cb/period.xlsx', header=0)
# 将 DataFrame 转换为字典列表
period_list = df_period.to_dict(orient='records')
period_insert_query = '''
INSERT INTO measure_create_period
(period_name, same_mean_period)
VALUES (%s, %s)
'''
for data in period_list:
period_name = str(data['标准表述'])
same_mean_period = str(data['同义表述'])
insert_query_data = (period_name, same_mean_period)
cursor.execute(period_insert_query, insert_query_data)
conn.commit()
data_query = '''
SELECT * FROM measure_create_config where delete_status = 0
'''
period_query = '''
SELECT * FROM measure_create_period
'''
cursor.execute(data_query)
data_list = cursor.fetchall()
cursor.execute(period_query)
period_list = cursor.fetchall()
for data in data_list:
config_id = data[0]
show_measure = data[1]
same_mean_measure = data[2]
period_measure = data[3]
change_measure = data[4]
same_mean_measure_arr = []
period_measure_arr = []
change_measure_arr = []
if same_mean_measure != 'nan' :
same_mean_measure_arr = same_mean_measure.split(',')
same_mean_measure_arr.append(show_measure)
if period_measure != 'nan' :
period_measure_arr = period_measure.split(',')
if change_measure != 'nan' :
change_measure_arr = change_measure.split(',')
for c in change_measure_arr:
period_measure_arr.append(c)
for x in period_measure_arr:
if x in change_measure_arr:
show_name = show_measure+x
else:
show_name = x+show_measure
for y in same_mean_measure_arr:
if x in change_measure:
parser_name = y+x
else:
parser_name = x+y
print(f'{show_name},{parser_name}')
for p in period_list:
period_exra_name = p[0]
period_exra_value = p[1]
if x.find(period_exra_name) != -1:
for v in period_exra_value.split(','):
if x in change_measure:
parser_name = y + x.replace(period_exra_name, v)
else:
parser_name = x.replace(period_exra_name, v) + y
print(f'{show_name},{parser_name}')
cursor.close()
conn.close()